o

NN

n

n

N

[4

11

16
13

14

0

INTEGER CLAS 10D
INTEGER GRADC1 0D
READ 'Sy 30
FORMAT (I1)
IF(J.ER. 1) 30 T 7
o 2 1=1s10
READ LSSV CLAs VLY
FORMAT (ad)
EHELL SD0ORT
INITIALIZE
M= 10
ID=N
ID=CIp+ld A2
1=1
1l=1p+1
1IFLE=0
COMPRARE s REFLACEY SET FLAG
IFCLAS (1) . LT.CLASCI12 350 To 1
ITEMF=CLAS (1)
CLRSCIVI=CLAS(IL)
CLAS LI =ITEMR
1fLis=1
FICK P MEXT FAIR IF HOT REATHED END OF TARELE
11=11+1
IF{1l.37T.M3 30 TO 4
1=1+1
0 To 11
IS TAELE =DRTED
IF(IFLG.GT.0) 30 TO [
IF(ID.NE. 1) G0 TO)
=TOF
READ (S B NAME s IGRD
FORMAT CAds 130
LINEAR SEARCH
po 16 1=1s 10
IFCCLAS (L) .ER.NAME? GO0 TO 14
COMT INUE
WRITE (S 13D
FORMAT (1H 16Xy SEARCH FARIL 2
=TOF
K =1
GRAD (K) =1GRAD
READ (S g
FORMAT (R1)
1F(J.em. 121> 0 7o 10
0 YO 7
sTAP
po 12 1=1,1v
WRITE (65 15)cLAs (1) sGRAD (1)
FORMAT (1H sAds LUxy 13D
sTOP
END
13

e S 2l e 2l B)

Fig. 4: The Final Code

Y

.

o LA

Fig. 5: A Flowchart

14

- — i e A—— e A 45 M

(123456 78 9 10 11 12 13 14 15 16 17 18 19 20\
1) W IS D) RS R T S T s GRS S | S 1.k 1 1

2 Y RUECE 0490 'eTecer g g 9 0 00 e 0 D8
3) S) T S R B TR T (R R s I s S SR R R S R
4 1000 00 xd 0 0 0 0 0 0 1.0 0 90
5 0o ee & 6o L 00 0 F- -9 0 0 1 0 0
6 @ 9'1 600661000 P @ @ 1 A4 60 -1"0
7 000300000 @ =0, -0 .00 1, 6:90 0 1
8 i e (13aa(1 20 GRAD SR S0 it il (BT MR TR GRS IR < (SO ¢ e O B « TS IR (SEE |
9 00000 0002 2 1T 0.0 0 0. .0 0. 0 0
10 g 050 0000 1 E EEge-tgl 2 e 9 -0 g
11 o S SR sl JRT 0 > 0 TR TR0 SR S g+ S o TR o SR « SN ¢ SEERNE A (R R |
12 g0 @0k LY d 000 g 00 0" 0 0 0 0 0
13 (0 R05(S = S8 D 1L U i Lt (NS L A (SO M Rl TR A AN (R |
14 000 00 0000 b SBEEe i ke el il @ sl

15 ko 00000 00l - F o b= Feat b Y 0 0 -0 .0 /

Table 1, The path matrix for the flowchart in Figure 5.

The flowchart in Figure 5 is small enough so that the feasible paths
can be tound by inspection, as was done in | 17 It is desirable to have a
more methodical way of finding the feasible paths for larger flowcharts. The
method proposed in [1] was to find the feasible paths by logical operations
upon P, and then to remove the corresponding columns from P. If the
method of finding infeasible paths was imperfect, as it promises to be, and
some infeasible paths remained undetected, then the remaining matrix would
contain not only all the feasible paths and but also some infeasible ones.
The infeasible paths would then be found and removed by methods described
n[1], as the matrix remaining from P was used in further reductions.

The approach followed for finding the columns of P (which represent the
infeasible paths), was to establish vector functions of feasible paths. Sub-
sequently, logical operations were performed between the vectors and the
columns of P. For example, from the flowchart it can be seen that any
feasible path containing segment 2 must also contain segment 3, and con-
versely. This can be expressed as a column vector C, whose transpose is
C' = (o, 1,1,0,0,0,0,0,0,0,0,0,0,0,0). Also, any feasible path containing
segment lZ must alao contain segment 8, but not conversely, Perhaps this
could be expressed as C' = (0,0,0,0,0, 0 0,1,0,0,0,1,0,0,0). In any case,

15

e, My

L

the tester of the program could construct a number of such vectors describ-
ing the relationships existing the flow-chart. Unfortunately, this approach
was not fruitful.

It may be possible to perform ANDing operations between the C. and the
columns of P and to find columns which represent infeasible paths, 'For
example, the following was tried and found wanting: Any column of P, say
kj, represents an infeasible path if and only if

o .
Ci kj # Ci all i (1)

Using just C1 and C,, it so happe.:s that (1) would correctly detect paths
3,4,5, and 6 as infeasibfe. It would incorrectly call paths 11 and 12 infeasi-
ble. (1) could be made to work for path 11 and 12 by adding to the set of the
Ci a vector which says that any path containing segment 9 must also contain
segment 8, namely C! = (0,9,0,0,0,0,0,1,1,0,0,0,0,0,0), But for this pro-
cedure to be workable it cannot depend on the set of the C, being complete.
While it is not fatal if the procedure leaves some infeasible paths undetected,

it must not under any circumstances incorrectly call a feasible path infeasi-
bleo

In an attempt to remedy the defect involved in needing a complete set of
the C.,, ANDing with single vectors C, instead of the complete set was tried,
Unfor]tunately this approached also failed.

Another approach would be to change the inequality in (1) to an equality
and search for feasible paths instead of infeasible ones, but there still is the
risk in that method that some feasible paths would be called infeasible be=
cause of the set of the Ci being incomplete.,

Also, an approach using ORing was tried, with results that were even
less acceptable than those from ANDing.

The above summarizes the approaches undertaken, and the difficulties
that surfaced. Current effort on this problem involves: (1) further search
for a satisfactory algorithm to estimate the number of feasible paths, and
(2) methods for constructing an automatic test driver, where the number of
inputs will equal the number of feasible paths (see Section 3. 8. 6).

REFERENCE
1, Gary S. Popkin, "Program Paths and the Number of Tests Needed to

Verify a Computer Program," "Summary of Technical Progress, Soft-
ware Modeling Studies," RADC-TR-76-143, pp. 40-49, May, 1976,

16

- A —

B e e e

]
:

3. 7 Statistical Theory of Program Testing and Proving - by
Arthur E. Laemmel

3.7.1 Introduction

The purpose of this work is to extend the results on program testing,
reported in the preceding progress report.

The usual approach to proving program correctness has so far been
applied successfully only to small programs. The practical approach to
large programs is to run a number of tests. The larger the number of such
tests, completed without errors, the greater is our confidence in the pro-
gram.

The method presented here is to combine both these approaches, this
being partially theoretical program proving, and partially experimental
testing.

3.7.2 A Model of Test Strategy

Observe that the result of testing a program is one of the following
two outcomes:

1) The program failed on input x.
or
2) The program operates correctly on n inputs.

The same approach is often followed to investigate in a preliminary
fashion the validity of a conjectured mathematical theorem. By analogy, we
choose parameter values, substitute into the postulated theorem, and cal-
culate the output. The result of this process is completely analogous to the
two outcomes stated above. In a mathematical theorem, once we satified
outselves that no counter example exists for a great number of tries, we
may proceed and try to prove the postulated theorem. In a program we will
not try to establish the validity of the program by proof, but be content with
the confidence achieved after a large number of tests. In fact, M. Rabin
challenges the notion of mathernatical proof in the context of computational
algorithms. He states that it is sufficient to establish that a statement is
true to a very high probability (e.g., 1-2-100) rather than to demand an
exact proof I,

We can model the above test process and optimize it by analogy with the
well-known, elementary probability example of drazwing a ball from a box.
We will follow the model suggested by W. L. Black®.

A version of the model might be rephrased in traditional terms as
follows: a single red ball is in one of two boxes, each of which contains a
very large number of white balls. Let

p; = a-priori probability that red ball is in box i
m, = probability that if red ball is in box i then a single look will

miss it
¢, = cost of a single look in box i

17

T —— N— B e —

s

S,

Black has given a simple way to find the minimum expected cost strategy
for searching for the red ball. Arrange the numbers

=). 2
n= 1,2,3.0.

n

C.
1

in decreasing order, If the k'th number in this arrangement is one with i=1
then the k'th look should be in box i, otherwise in the other box.

In order to get a feeling for this strategy in the present application, let

box 1 represent possible proofs that a certain computer program works cor-
rectly and box 2 represent various sets of input data,

Choose parameters:

Py = « 9e—(program probably OK) —e Py = . 1

m, = ,999)computer search for m, =, 2 one
€)= 100 | a proof time-consuming c, = 5 program
and not likely to succeed test is easy
py (lem,) p,(l-m,)
it Sestatins GRE R 9E TN i A =.016
c c

1 2
py(l-m,)m p5(1-m,)m
b KX 00000899 SRR A, 002

<, c,y

2 2
Py {d~m, e, Pyli-mq iy

<, = , 00000898 , = ,00064
. 00000897 . 00128
. 00000896 . 0000256
. 00000895 . 00000512

According to this, looks 1, 2,3,4, and 5 should be in box 2, then looks 6,7,
8 (for several hundred looks) should be in box 1, This strategy simply says
to look in the box which has the highest ratio of a-posteriori probability to
cost at any stage., It is intuitively satisfying that the first looks were for

18

counter examples, and (perhaps) that the sixth look was for a proof, It is not
too satisfying that these looks are to be followed by o attempts at a proof,
where a is given by

. 000009 ml"’= . 00000512
.57 = (1-,001)% 1-.001e

If the first series above decreased more rapidly, and the second series
decreased more slowly, the strategy would go back and forth between proof
and counter example more frequently, The main difficulty is that successive
trials, either for proof or counter examples, are not satistically indepen-
dent as is required in Black's model.

Each attempt at a proof can build on the last attempt because any partial
results obtained in the previous attempt can be used in the next. This
means that m, should decrease with n instead of remaining constant. On
the other handl, if a computer program is tested with 10 random inputs, and
if no failure occurs for the first 9, than the 10th trial certainly gives less
information than the lst trial, This means that m., should increase with n,
i,e. that errors are harder to find with a single test later on in the testing
sequence. Such a result can be derived from formulas given in the previous
report, since these represent a way to describe statistical dependence among
test outcomes,

Incidentally, the same approach was successfully applied to the opti-
mization of a rgliability structure under cost constraint by M. Messinger and
. L. Shooman®. The algorithm allocated redundant components to the
structure in a sequence in such a way that each addition of a component
maximized the gain in reliability per dollar.

3. 7.3 Conclusion

The work is continuing in this area. The object is to formalize the
interactive part-proof, part-test procedure to program verification with a
prescribed confidence level.

References

1. M. Rabin, Carnegie-Mellon Symposium on New Directions and Recent
Results in Algorithms and Complexity, April 7-9, (reported in Paper
Crisis, SIAM News, Vol. 9, number 4, August 1976).

2. W, L. Black, "Discrete Sequential Search" Information and Control,
vol. 8, pp. 159-162, 1965.

3, M. Messinger and M. Shooman, "Optimum Allocation of Spares

Redundancy: A Tutorial Survey," IEEE Transactions on Reliability,
July 1071.

19

. T oy T . —

3.8 Implementation of Shooman's Model of Exhaustive Testing - An Auto-
matic Type 1, A Tester - by Denis L. Baggi

3,8.1 Introduction

In an internal paper '""Analytical Models for Software Testings' Martin L,
Shooman describes a scheme for implementing a driver program to auto-
matically test each path of a given program. An implementation of this
scheme in PL/ 1, with a few revisions, is described here, along with two
examples of programs, which were run with normal analytical debugging
techniques - i.e., with some testing data - and through the testing program,
Comparisons among man-hour efforts and computer time in both cases are
made,

3.8.2 The Testing Driver Program

A program, referred to as driver program, has been developed and run
in conjunction with two programming examples. Its purpose is to allow auto-
matic testing of all possible paths of any given program, A description of
its functioning follows.

The driver program requires a data card containing an integer, N=
TESTS, i.e., the number of IF statements, plus the number of repetitive DO
groups, in the program and subroutines, to be supplied by the programmer.

he next data item has to be an 'order,'" i.e., a character string such
as 'NORMAL OPERATION, ' or 'TEST, ' or any other string. If the order is
'NORMAL OPERATION, ' then the driver allows normal functioning of the
program to be tested, e.g., with a set of data designed, by the programmer,
to test some cases - a normal debugging practice.

If the order is 'TEST, ' no data set is needed for the tested program,
but an array, T, with lower bound 1 and upper bound N-TESTS (the number
of tests, as read in previously), will be constructed to represent, in ascend-
ing order, all possible bit combinations of binary numbers from 0 up to 2 **
N-TESTS - 1; this array is called testing word, and it thus consists of the
bits of a binary counter with N=-TESTS bits, Notice that the value 0 is in fact
represented, in the corresponding T, by - 1, while 1 is represented by 1,
Eventually the program to test is run for any such binary combination,

For any other order string, such as 'ENOUGH, ' as well as in the case
of absence of data, the whole system stops.

3.8.,3., The Tested Program

Although no particular care has been taken to make sure that the driver
program is fully compatible with all possible programs to test it is believed
that, at its present state, the invariant part is flexible enough to accept a
large class of programs with no modification, requiring for other programs
only minor, sensible changes,

20

o L e Rale SRR T T

Shooman indicates (in p. 5-1 of his paper), a strategy for implementing
the driver program, namely, a revised way of writing 1F statements and
DO loops in a program to be submitted to testing; however, since such
schemes lack generality (-i,e.,only conditions of the type "exp > (' are al-
lowed in IF statements, and only limits from 1 up to an upper bound > 0 in
DOloops -), the scheme described here has been developed as a natural de-
rivative of these suggestions; hence, the only restrictions to be obeyed in
writing a program will be the following:

la) instead of IF cond THEN statementl; ELSE statementz;

write IF F(cond) THEN statementlz ELSE statementz:
lb) instead of DOI = LIMIT 1 TO LIMIT 2 BY INCR ;

write DO I = GL (LIMIT 1, LIMIT 2) TO GH BY INCR;
lc) instead of DO WHILE (cond) ;

write DO WHILE (H(cond)) ;

(where: F, GL, GH and H are described in the forth coming tech-
nical report)

2) function and subroutine procedures are possible but should be in-
ternal to the program

3) variables used in the program which are assigned a value through
a read (GET LIST) statement should be initialized, for instance through a
DCL INIT statement,

All these restrictions could be removed. To remove 1), one could con-
struct a subprogram in the operating system which automatically supplies F,
GL and GH, and H, Subroutines could be external, as long as a mechanism
is provided for passing back and forth T - e.g., COMMON statements
in FORTRAN -, hence removing 2). And point 3) is a direct consequence of
the read=-in scheme described by Shooman, which could be modified at will.

3,84 The Two Examples

For illustration two programs were chosen at the two ends of a spectrum:
one with many IF statements, and input data, and the other with DO groups
and one subroutine, and no input data,

A, First Example : Computer Solution of a Card Game

This is a very slightly altered version of Shooman's algorithm of Fig.
4-3 in his paper, The algorithm appears in Fig, 8. It determines the win=
ner of a card game, in which player A is dealt two cards, Al and A2, and B,
similarly, gets Bl and B2, (four integers read in with a GET LIST statement).
If both winners have a pair, the highest pair wins, or if they are equal it is

21

- m————

Pt T

| Prin:
'A Wias | | Tie i

j
Yooy s

| ign_3 High 3=B2 |
' LowB=3B1 |

False

Fig. 8: Flow Chart for Com{uter Solution of a Card Game
2

o i T —

comane o

a tie; if only one player has a pair, he wins; otherwise the highest card wins,
or if they are equal, the highest second card wins; identical hands are ties.
At first the system was run under 'NORMAL OPERATION' conditions, The
results are shown in the forth coming report. The system was next run
under 'TEST' conditions. The tested program has 12 IF statements, hence we
have a 12-bit testing word.,

Since the program is fully debugged, no error can be seen in the output
listing; should one error appear, however, it would be easy, from the test-
ing word, to reconstruct the path and detect the deficient statement.

B. Second example: A Program Which Prints the Prime Factors of
all Integers from 1 to 100

This is a simple pragram which tests each integer from 1 to 100, prints
it, and its prime factors, or the word PRIME if it is prime, Its algorithm
is presented in Fig. 9.

The internal subroutine PRINTOUT prints the results; this procedure
has been incorporated to show the generality of the scheme including sub-
programs. Notice that, although it is called only once from the main pro-
gram, it could be invoked as many times as needed, because of the design of
the internal procedures of the driver program, which know by themselves
how to select a new bit in the testing word each time they are used.

3.8,5 Efficiency of the System

Program Example A,

- it took 30 minutes to design the program

- it takes no extra time to redesign a program according to the
specifications expressed in section 3.8.3

- it took 10 minutes to find a data set to test some well-choosen paths

- the program ran in 2,41 minutes under 'NORMAL OPERATION' with
that set of data

- the program ran in 4. 12 minutes under '"TEST' conditions, explor-
ing all paths

Program Example B

- it took 20 minutes to design the program
- there is no data
- the program ran in 3,81 minutes for 100 integers

the program ran in 1, 76 minutes under TEST conditions

23

— e ———— - 1 T————— ———— - - P———

MAIN PROGRAM

SUBROUTINE
PRINTOUT

Fig. 9: Algorithm for
Printing Prime
Factors from
1 to 100

N =1 DO NO
N =N+l N < 0o
YES
FACTOR «0
M= N, L2
L=l
DO NO
M>1&
L* L<M]

) e ol S 0 §

M -M/L

FACTOR (I) = L

G|

PRINTQUT

N, FACTOR, M

-«
START
PRINT N
i DO
FACTOR
I=1+1 () 40

PRINT
FACTOR (I)

PRINT
PRIME

24

RETURN

v ——

=

Hence the system provides the following: '

Advantage

No time is spent in finding a data set to debug a program,

Dis advantage

Running time may increase exponentially with the number of IF state-
ments and DO loops. For instance, Program A contains 12 IF statements,
and therefore the testing word has 13 bits and 8192 runs through the program
were needed to test its 100 paths (hence, with this blind mechanical approach
many tests are meaningless). However, if the program becomes too large, it
can be separated in portions to be tested individually, along with the inter-
connecting data sets, Furthermore, this disadvantage is compensated by
those cases of programs with many DO-loops and few IF statements. Pro-
gram B, for instance, required almost four minutes for a hundred integers,
and would use a lot more for, say 10, 000 integers, but it took less than two
minutes to go through all paths as defined, and would still take the same
amount of time no matter how many integers it would have to consider.
Hence a TEST run is, in these cases, very time saving,

3.8.,6 Conclusions

A possible implementation for an automatic program tester of type 1, A
has been discussed. The tester ignores the semantics of the tested program,
but is able however to run through all possible paths present in a program
and catch a possible error.

This implementation, rather than representing an ultimate result, is
meant to be an illustration of the method and techniques proposed by Shooman
in his paper; it would be easy, for instance, to make the driver program
more flexible or suited to other styles or programming languages.,

It was rewarding to discover that even within the limited development of
these techniques some goals have been achieved, namely, the realization of
a system which has already proved its usefulness in debugging the described
programs,

25

-

4,0 Directions for Next Period's Work

In the next period we plan to work on the following:

1,

2,

3.

Adamowicz:

Bagpgi:

Laemmel:
Marshall;

Ruston and

Berlinger:

Shooman and

Popkin:

Shooman and
Ruston @

Further work on measures for the evaluation of
software,

Completion of a report on the construction of an
automatic driver for Shooman's model of test cover-
ing each program. path,

Continuation of studies on statistical program test-
ing.

Application of graph theory to statistical sampling
approaches for software reliability,

Applications of software physics to complexity
measures,

Continuation of work on levels of program testing

Experimental tests for (1) validation of seeding/
tagging estimates (2) Shooman's extended debugging
models (incorporating errors generated during the
debugging process), and (3) obtaining data for
verification of software physics and other complex-
ity measures,

5.0 Professional Activities

This section summarizes the professional activities of the research
personnel working on this contract,

5.1 Published and Submitted Papers and Reports

1,

3.

C. L. Hsu and L. Shaw, "Downtime Distributions Based on a
Multivariate Exponential Distribution," Report No. Poly EE/EP
76-002 EER 120, Polytechnic Institute of New York, Feb. 1976,

C. Marshali,

""Contributions to the Theory of Avaiilability, "' Re=

port No. Poly EE/EP 76-004 EER 121, Polytechnic Institute of
New York, Feb, 1976,

S. N. Mohanty and M, Adamowicz, "Proposed Measures for the
Evaluation of Software,' to appear with Proceedings of the Sym-
posium on Computer Software Engineering, 1976,

26

e —

8.

9.

lo.

11,

12,

13,

L. Shaw and M. Shooman, ''Confidence Bounds and Propagation
of Uncertainties in System Availability and Reliability Computa -
tions, " Technical Report N00014-67-A-0438-0013, Poly EE/EP
75-002 Polytechnic Institute of New York, Jan., 1976.

L., Shaw and S. Sinkar, '"Redundant Spares Allocation to Reduce
Reliability Costs, ' Naval Research Logistics Quarterly vol. 23,
No. 2, pp. 179-194, June 1976,

M. L. Shooman, "Recent Developments in Software Reliability -
The State of the Art,'" To appear in the Proce=dings of the
Thirteenth IEEE Computer Society International Conference,
Washington, D.C., Sept. 1976.

M. L. Shooman "Structural Models for Software Reliability Pre-
diction, "' Second National Conference on Software Engineering,
October, 1976, San Francisco, Calif.

M. L., Shooman and M, I, Bolsky, '"Types, Distribution, and Test
Correction Times for Programming Errors, " IEEE Transactions
on Reliability, vol. R-25, No. 2, pp. 69-70, June 1976.

M. L. Shooman, M, Horodniceanu, and E, J, Cantilli, '"System
Safety Applied to Transportation Systems, ' To appear in the Pro-
ceedings of Inter Society Conference on Transportation, Los
Angeles, Calif, July 1976,

M. L. Shooman and S, Natarajan, "Effect of Manpower Depoly-
ment and Error Generation on Software Reliability, ' to appear in
the Proceedings of the Symposium on Computer Software Engineer-
ing, 1976,

M. L, Shooman and H. Ruston, ''Cost Reducing, High Reliability
Programming Techniques, ' accepted for the 1976 ORSA/TIMS
Joint National Meeting, November, 1976,

M. L, Shooman and S, Sinkar, '"Generation of Reliability and
Safety Data by Analysis of Expert Opinion,' accepted for the 1977
Annual Reliability and Maintainability Symposium, Philadelphia,
PA.,

M. L. Shooman and A, K, Trivedi, ""A Many-State Markov Model
for Computer Software Performance Parameters, ' IEEE Trans-
actions on Reliability, vol. R-25, No. 2, pp. 66-68, June 1976,

5,2 Talks and Seminars

1.

2,

- .

-,

vl

S. Habib, "An Overview of Microprocessors, ' Seminar, PINY,
February 1976.

H. Ruston, ""Top-down Design, ' Computer Seminar, PINY, March
1976,

27

o "‘" vl

D. Baggi, '""Design of Automatic Test Drivers, ' Seminar, PINY,

M. L. Shooman, H. Ruston, A, Sukert, E, Berlinger A, Laemmel,
E. Lipshitz C. Marshall, B. Rudner, '"Software Engineering
Topics, " Oral Presentation of Progress on Studies Supported by

S. Habib, "User Services in Remote Entry Environment, "' National
Science Foundation Conference on Computers in Undergraduate Edu-

M. L. Shooman, Chairman, Program Committee, MRI Symposium
on Computer Software Engineering, New York City, April

M. Adamowicz, S, Habib, A, Laemmel and H, Ruston, Members,
Program Committee, MRI Symposium on Computer Software En-

M. L, Shooman, Member, IEEE ADCOM (Administrative Commit-

M. L, Shooman, Member, Executive Committee, IEEE Computer

M. L. Shooman, Member, NASA Advisory Committee on Guidance,

S. Habib, Chairman, National Lectureship Committee of the As-

% June 1976,
4,
the RADC Program, PINY, June 1976,
5.
cation, Binghamton, NY June 1976.
5.3 Symposia and Technical Societies
1,
1976.
2,
gineering.
5.4 Committees
1.
tee) of the Group on Reliability,
2.
Society Technical Committee on Software Enginee ring.
3.
Control and Information Systems,
4,
sociation for Computing Machinery.
5.

S. Habib, Chairman, SIGMICRO (Sepical Interest Group on Micro-
programming) of ACM,

28

METRIC SYSTEM

BASE UNITS:
—Quantity Unit S1 Symbol Formula
length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous-intensity candela cd
SUPPLEMENTARY UNITS:
plane angle radian rad
solid angle steradian sr
DERIVED UNITS:
Acceleration metre per second squared m/s
activity (of a radioactive source) disintegration per second (disintegration)/s
angular acceleration radian per second squared rad/s
angular velocity radian per second rad/s
area square metre m
density kilogram per cubic metre : kg/m
electric capacitance farad F A-sV
electrical conductance siemens S AN
electric field strength volt per metre Vim
electric inductance henry H V-s/A
electric potential difference volt A WA
electric resistance ohm VIA
electromotive force volt \' WIA
energy joule J N-m
entropy joule per kelvin JK
force newton N kg-m/s
frequency hertz Hz (cycle)'s
illuminance lux Ix Im/m
luminance candela per square metre " cdim
luminous flux lumen Im cd-sr
magnetic field strength ampere per metre A/m
magnetic flux weber Wb Vs
magnetic flux density tesla T Wb/m
magnetomotive force ampere A
power watt w Jis
pressure pascal Pa N/m
quantity of electricity coulomb C A-s
quantity of heat joule] Nemr
radiant intensity watt per steradian Wis.
specific heat joule per kilogram-kelvin Jkg-K
stress pascal Pa N/m
thermal conductivity watt per metre-kelvin - Wim-K
velocity metre per second mis
viscosity, dynamic pascal-second Pe-s
viscosity, kinematic square metre per second m/s
voltage volt v WI/A
volume cubic metre m
wavenumber reciprocal metre (wave)m
work joule) N:m
SI PREFIXES:
Multiplication Factors Prefix SI Symbol
1 000 000 000 000 = 10'? tera T
1 000 000 000 = 10* Rige G
1000 000 = 10* megs M
1000 = 10° kilo k
100 = 10? hecto* h
10 = 10’ deks* de
0.1=10"" deci* d
0.01 = 10-? centi® «
0.001 = 10~ milli m
0.000 001 = 10~ * micro I3
0.000 000 001 = 10-* nano n
0.000 000 000 001 = 10~ '? ico r
0.000 000 000 000 001 = 10~ omto
0.000 000 000 000 000 001 - 10 '™ atto L]
* To be avoided where possible.

. Ty .

s .
-~ B o P

MISSION
of
Rome Avr Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(«c3) activities, and in the C? areas of informatiorn sciences
and intelligence. The principal technical mission areas

are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence

data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave g
physics and electronic reliability, maintainability and
compatibility. 3

S

